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On vortex sound at low Mach number 
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A transformation is described which relates the sound generated by low Mach number 
flow to the flow vorticity. For compact flow fields the apparent sound source is of 
quadrupole type andlinear in the vorticity and therefore also linear in the flow velocity. 
This scheme is applied to the sound generated by the interaction of two identical thin 
vortex rings. Then a flow field with a number of compact vortices is discussed. It is 
found that each vortex can be replaced acoustically by a dipole related to the impulse 
of the vortex, plus the quadrupole just mentioned plus a spherically symmetric sound 
source related to the energy of the vortex. An application to low Mach number free- 
space turbulence shows that the generated sound is related to the vorticity correlation 
tensor. 

1. Introduction 
Different methods have been proposed for calculating the sound generated by low 

Mach number Aow. In  these methods an inhomogeneous wave equation of the form 

a;2 a2ppt2 - ~p = q ( 1 )  

is derived from the compressible hydrodynamic equations. I n  ( i ) ,  a, denotes the 
ambient speed of sound, p a quantity which agrees in the far field with the acoustic 
pressure fluctuations and q a source term which can be calculated from the flow, which 
is assumed to be incompressible and known. Different expressions for q have been 
derived which can be shown to agree in the pressure far field obtained from (1). Light- 
hill (1  952) showed that q can be written as a quadrupole source 

q = a2qj/axiaxj, T~ = p o u w ,  (2) 

where po is the ambient density and the ui are the flow velocity components. Ribner 
(1  962) showed that q can be chosen as 

(3) 

I n  this case the incompressible pressure acts as the sound source. A third type of 
sound source has been derived by Powell (1964) and Howe (1975), who showed that 
q can be taken as 

where w = curlu denotes the vorticity vector. One observes that (3) expresses the 
generated sound in terms of monopole sources, (4) expresses it in terms of dipole 
sources and (2) expresses it in terms of quadrupole sources. As these sources lead to the 
same sound field, the total monopole strength and dipole strength of the sources in (3) 

q = a; 2 ptt inc , A ~ C  = - a2qj/axi axi. . 

q = p,divL, L = w x U, (4) 
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and (4) vanish. The main difference in these different sources, apart from their different 
types, consists of their degree of compactness. For the often-treated case of an unsteady 
flow which has a quadrupole-type far-field behaviour (this occurs if there are no mass 
sources and no forces in the flow region), the Lighthill quadrupole source decays like 
lxJ-‘O and Ribner’s monopoles as  XI-^, therefore the total monopole strength leads 
in this case to a divergent integral. If the flow is generated by vortices which are con- 
fined to a finite region, Powell’s sources defined in (4) vanish outside this region. These 
sources also show that the sound is generated by vortices. I n  infinite space there is no 
sound without vortices. Equation ( 4 )  does not, however, represent the sound in terms 
of the vorticity alone: the flow velocity occurs also. This leads to a difficulty if one tries 
to  apply the source term of (4) to the sound generated by vortex filaments. Then w 
shows a 6-function-like behaviour and u is singular a t  the singularity of the &function. 
This difficulty is usually overcome by substituting for u the velocity of the filament. 
A similar difficulty prevents the application of (4) to vortex sheets. 

One also notices that (1) and the source terms defined in (2)-(4) are local relations. 
The derivatives of p a t  a given position are related to derivatives of the flow velocity a t  
that position. I n  (3) the source is locally related to the incompressible pressure, which 
is locally related to the velocity components. Furthermore, one observes that the 
source terms are quadratic functions of the flow velocities, which implies that the same 
is true of the acoustic pressure. This can be clearly seen from a Green’s function 
representation 

where G denotes the Green’s function for (1) with the appropriate boundary conditions. 
One finds from ( 5 )  that the acoustic intensity 

p(x, t )  = J G(x, Y, t - t ’ )  d Y ,  t ’ )  d3Ydt’, ( 5 )  

I,’=-- PYX t )  JJG(x, y, t - t’) G(x, y’, t - t ” )  q(y,  t’) q(y’,  t ” )  d3y d3y’ dt’dt” (6) 
Po a0 Po a0 

is related to expressions quadratic in q and therefore to expressions biquadratic in 
the flow velocities. From (6) one obtains the well-known relations between the sound 
generated by low Mach number turbulence and the fourth-order velocity correlations. 

2. Basic equations 
It is well known that  the hydrodynamic equations are nonlinear. For this reason 

there are relations between quantities linear and quadratic in the velocity, e.g. 
Helmholtz’s vortex equation 

(7) 

which is valid for incompressible flow. To achieve a representation of the acoustic 
pressure in terms of curl L an integration by parts of ( 5 )  with the source term of (4) is 

(8) 
performed: 

Now one could apply (7) if one were able to find a vector Green’s function which obeys 
the equation 

Then one would find from (8) 

awlat + curl L = 0, 

p(x, t )  = -po J V, G(x, y, t - t’) . L(y, t ’ )  d 3 ~  dt’. 

V,G = V, x G. (9) 

p = -poJG.V, x Ld3yd t  
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and from Helmholtz’s vortex equation (7) 

=  PO^ G ( x ,  y, t - t ’ )  . W(Y, t ’ )  d3ydt’. (10) 7 
Equation (10) differs in several respects from ( 5 )  with the source from (2), (3) or (4). It 
is derived not from differential equations but from integral representations, and 
therefore probably does not represent a local relation. The integration region in (10) is 
the region of non-vanishing vorticity, just as for Powell’s sources. Furthermore, the 
integrand in (10) does not contain the flow velocity, therefore the acoustic pressure can 
be calculated from the vorticity of the flow alone. For this reason it can easily be 
applied to the sound generated by moving vortex filaments and vortex sheets. 

Another marked difference between (10) and (5) is contained in the fact that the 
pressure depends linearly on the vorticity field and therefore also linearly on the flow 
velocity. This means that all vortices contribute to the generated sound and that these 
contributions add linearly. The influence of their interaction enters (10) only through 
their motion. According to (6) the sound intensity derived from (10) depends on the 
second-order vorticity correlations, which correspond to derivatives of the second- 
order velocity correlations instead of the fourth-order correlations in (6). 

The main difficulty with (10) consists of solving (9). Although (9) represents a purely 
acoustic problem, completely independent of the flow field which generates the sound, 
one finds that (9) is in general unsolvable. It consists of three first-order partial 
differential equations, whose integrability condition, which is obtained by applying 
the divergence operator to (9), is 

Au G(x, y, t - t ’ )  = 0, (11) 

a condition which is usually not satisfied by the wave-equation Green’s function. In 
cases where G is a symmetric function of its arguments it satisfies instead the in- 
homogeneous wave equation 

Ag G(x, y, t - t ’ )  = a t 2  a2G/W2 - 6(x - y) 8(t - t ’). (12) 

Therefore a vector function G exists only if the right-hand side of (12) vanishes. The 
second term vanishes for x 9 y ,  so this term vanishes if it is assumed that x is in the 
wave region and y in the flow region, which is usually the interesting case. The first 
term on the right-hand side contains an oat2 factor, therefore it is small for large values 
of the speed of sound and might perhaps vanish to lowest order in the Mach number. 
Examples will clarify this. Notice that the differentiation refers to the variable y, the 
integration variable which is restricted to the flow region. 

3. Examples 
As a first example a line vortex with circulation I’ near a semi-infinite rigid plane is 

considered, a problem treated by Crighton (1972) and Howe (1975) (figure 1) .  The 
appropriate approximate Green’s function, valid for x in the wave region and y in the 
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FIQURE 1. Vortex near a semi-infinite rigid plane. 

flow region, for low Mach number flow has been determined by Howe (1975). It is 
given by 

where 1x1 = x and $(x) = xjsin ;to is the potential function which describes irrota- 
tional incompressible flow around a half-plane. This function satisfies the solvability 
condition (1  l), therefore a vector function G can be determined. One easily finds 

G(x,y,t-t’) = $(y)$)6 t - t ‘ - -  k, ( a“,) 
where @(y) is the stream function conjugate to $(y) and k is a unit vector in the z 
direction. If the position of the vortex at  time t‘ is denoted by x,(t’), the flow vorticity 
is given by w(y, t ’ )  = rS(y - x,(t’)) k. Then (10) leads to 

which is exactly Crighton’s result in Howe’s form. 

large values of x in the wave region, the Green’s function is given by 
The next example refers to an unsteady low Mach number flow in free space. For 

G(x,y,t-t‘) = 

which can be approximated as 

t r  = t - t’ - x/ao. 

If this is inserted in (8), one finds that the contributions from the first two terms of the 
right-hand side of (1 5 )  vanish because I L d3y = 0, as has been shown by Powell (1 964, 
equation (42). So we restrict ourselves to the third term of (15). This term does not 
satisfy the solvability condition (1 l), therefore it might seem that a G function does 
not exist. However, if one observes that G is to be applied not to an arbitrary function, 
but to a function which obeys certain conditions, a suitable G can be determined. One 
starts from the identity 

and finds 

The second term on the right-hand side of this equation is constant because of Powell’s 
‘ three-sound-pressures theorem ’. It represents the total hydrodynamic energy in the 

v,(x.Y)2 = ~~V,X[(X.Y)XXYl+X2Y~ 

I V,(X . y)2. Ld3y = 8 J v, x [(x. y) x x y] . L d3y + g2q- y . L d3y. (16) 
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FIGURE 2. The ring vortex. 

flow (Powell 1964, equation 7 3 ) ,  therefore it can be ignored in (8) and G can be chosen 
as 

Then (10) leads to 
p = - -  1 2nai x3 at3 a3 / ( x . y ) y . (wxx )d3y ,  (17) 

where the retarded time t' = t - ./ao is to be used in w. 
One notices that only those components of w which are orthogonal to the vector 

to the observation point contribute to the integral. In  this approximation a vortex 
element does not radiate in the direction of its axis. 

The integral in (1 7 )  can be easily evaluated for a circular vortex ring of radius R 
(figure 2) .  If it is situated at  yw = a + Re($), 0 < q5 < 2n, where a is a vector to the 
centre of the ring and e(q5) denotes a unit vector in the vortex ring's plane, the vorticity 
s given by w = rn x eS(y-y, ), where the 8-function is a two-dimensional one in 
the n, e plane. Then one finds 

y x  w = I'{(a.e)n-(a.n)e+Rn}d(y-y,). 

If one uses eetf(y - y,) d3y = R( I - nn), where I denotes the unit tensor, one obtains 
from (1 7 )  

P a3 p = 0 - FR2x. (an - &a. n) .x. 
4agx3 at3 

If the ring moves in the direction of its normal one finds with a = [n 

x .  (nn - 4). x .  po d31'R2t p = - -  
4aix3 dt3 

If there are several vortex rings one has just to add their contributions. For a system 
of circular coaxial rings, the generated sound is related to the third derivative of the 
mean axial position of the vortex system (Lamb 1948, art. 162), 

and ring diameters R, and R, at 
positions El and t, one finds 

For two identical vortex rings with circulation 

p=- -  d3s~.(nn--+}.x,  s = F(R;&+R;&). 
4a39 dt3 

Lamb shows that dsldt is related to the energy T of the vortex system by 
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FIGURE 3. The configuration of the ith vorticity spot. 

If one considers very thin rings with a separation d small compared with their diameter 
Ro and large compared with their core diameter, one may identify their relative motion 
with that of a pair of rectilinear spinning vortices and assume 

a r  a r  ,gl = u,t+-cos--t, Rl = Ro+2sin-t, 

c2 = UOt--cos-t, R2 = Ro--sin-t 

2 nd2 7rd2 

a r  d I ’  
2 nd2 2 nd2 

to hold, where uo is the translation velocity of the vortex system. (The same result 
can be obtained by lengthy calculations from Hicks’ (1923) results.) This leads to 

and to 

The transformation of (9)  can also be applied to a flow field which is generated by 
a number of compact vorticity spots. Then (8) can be written as a sum over these spots: 

where 
mation (1  5) is valid in every spot one finds 

denotes the volume of the ith spot (figure 3). If it  is assumed that the approxi- 

t; = t - t’ - xi/ao, 

to be valid in the ith spot. Inserting this into (8a)  one obtains for the generated sound 

where 

denotes the impulse of the ith vortex, 
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is the tensor associated with the ith vortex found already in (17)  and 

691 

is the energy of the ithvortex (Lamb 1948, art. 152). In  this approximation each vortex 
acts acoustically like a dipole with a moment equal to the time derivative of the 
vortex impulse, plus a quadrupole with moment Qi plus a spherically symmetric 
source with strength equal to - Q of the second derivative of the vortexenergy. In the 
case of a single vorticity spot, this result reduces to (1  7 )  because the vortex impulse 
and energy are then constant. 

This scheme can also be applied to the sound generated by turbulence. Then one has 
to evaluate the average value of (6). With the Green’s function (14) one finds €or the 
Green’s function product in (6) 

If one expands the second &function and uses the fact that to lowest order only terms 
which are quadratic in y and y’ lead to non-vanishing contributions, GG’ simplifies to 

8”(7)(x.y)2(x.y’)2. 
64n a,x 

If this is inserted in (6) together with 

I(x.y)2divLd3y = ~ / ( x . y ) x x y . - - d 3 y  aw 
at 

one finds for the average intensity 
a6 

P: 144n x a, I/(.. y) (x. y’) x x y .  -(w(y, t ’ )  w(y‘,t’ - T ) ) . x  x y‘d3yd3y,,. 
876 

( I )  = - 

This expression relates the generated souiid linearly to the vorticity correlation tensor, 
which is linearly related to the velocity correlation tensor. 
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